Smoothing splines on Riemannian manifolds, with applications to 3D shape space
成果类型:
Article
署名作者:
Kim, Kwang-Rae; Dryden, Ian L.; Le, Huiling; Severn, Katie E.
署名单位:
University of Nottingham
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12402
发表日期:
2021
页码:
108-132
关键词:
molecular-dynamics
regression
摘要:
There has been increasing interest in statistical analysis of data lying in manifolds. This paper generalizes a smoothing spline fitting method to Riemannian manifold data based on the technique of unrolling, unwrapping and wrapping originally proposed by Jupp and Kent for spherical data. In particular, we develop such a fitting procedure for shapes of configurations in general m-dimensional Euclidean space, extending our previous work for two-dimensional shapes. We show that parallel transport along a geodesic on Kendall shape space is linked to the solution of a homogeneous first-order differential equation, some of whose coefficients are implicitly defined functions. This finding enables us to approximate the procedure of unrolling and unwrapping by simultaneously solving such equations numerically, and so to find numerical solutions for smoothing splines fitted to higher dimensional shape data. This fitting method is applied to the analysis of some dynamic 3D peptide data.
来源URL: