Use of model reparametrization to improve variational Bayes†
成果类型:
Article
署名作者:
Tan, Linda S. L.
署名单位:
National University of Singapore
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12399
发表日期:
2021
页码:
30-57
关键词:
approximate inference
TRIAL
摘要:
We propose using model reparametrization to improve variational Bayes inference for hierarchical models whose variables can be classified as global (shared across observations) or local (observation-specific). Posterior dependence between local and global variables is minimized by applying an invertible affine transformation on the local variables. The functional form of this transformation is deduced by approximating the posterior distribution of each local variable conditional on the global variables by a Gaussian density via a second order Taylor expansion. Variational Bayes inference for the reparametrized model is then obtained using stochastic approximation. Our approach can be readily extended to large datasets via a divide and recombine strategy. Using generalized linear mixed models, we demonstrate that reparametrized variational Bayes (RVB) provides improvements in both accuracy and convergence rate compared to state of the art Gaussian variational approximation methods.
来源URL: