Estimation and clustering in popularity adjusted block model
成果类型:
Article
署名作者:
Noroozi, Majid; Rimal, Ramchandra; Pensky, Marianna
署名单位:
Washington University (WUSTL); Middle Tennessee State University; State University System of Florida; University of Central Florida
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12410
发表日期:
2021
页码:
293-317
关键词:
Community Detection
network models
Consistency
摘要:
The paper considers the Popularity Adjusted Block model (PABM) introduced by Sengupta and Chen (Journal of the Royal Statistical Society Series B, 2018, 80, 365-386). We argue that the main appeal of the PABM is the flexibility of the spectral properties of the graph which makes the PABM an attractive choice for modelling networks that appear in biological sciences. We expand the theory of PABM to the case of an arbitrary number of communities which possibly grows with a number of nodes in the network and is not assumed to be known. We produce estimators of the probability matrix and of the community structure and, in addition, provide non-asymptotic upper bounds for the estimation and the clustering errors. We use the Sparse Subspace Clustering (SSC) approach for partitioning the network into communities, the approach that, to the best of our knowledge, has not been used for the clustering network data. The theory is supplemented by a simulation study. In addition, we show advantages of the PABM for modelling a butterfly similarity network and a human brain functional network.
来源URL: