Functional structural equation model
成果类型:
Article
署名作者:
Lee, Kuang-Yao; Li, Lexin
署名单位:
Pennsylvania Commonwealth System of Higher Education (PCSHE); Temple University; University of California System; University of California Berkeley
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12471
发表日期:
2022
页码:
600-629
关键词:
dimension reduction
networks
regularization
Consistency
algorithm
selection
operator
摘要:
In this article, we introduce a functional structural equation model for estimating directional relations from multivariate functional data. We decouple the estimation into two major steps: directional order determination and selection through sparse functional regression. We first propose a score function at the linear operator level, and show that its minimization can recover the true directional order when the relation between each function and its parental functions is nonlinear. We then develop a sparse functional additive regression, where both the response and the multivariate predictors are functions and the regression relation is additive and nonlinear. We also propose strategies to speed up the computation and scale up our method. In theory, we establish the consistencies of order determination, sparse functional additive regression, and directed acyclic graph estimation, while allowing both the dimension of the Karhunen-Loeve expansion coefficients and the number of random functions to diverge with the sample size. We illustrate the efficacy of our method through simulations, and an application to brain effective connectivity analysis.