The Barker proposal: Combining robustness and efficiency in gradient-based MCMC
成果类型:
Article
署名作者:
Livingstone, Samuel; Zanella, Giacomo
署名单位:
University of London; University College London; Bocconi University; Bocconi University
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12482
发表日期:
2022
页码:
496-523
关键词:
walk metropolis algorithm
geometric ergodicity
CONVERGENCE
摘要:
There is a tension between robustness and efficiency when designing Markov chain Monte Carlo (MCMC) sampling algorithms. Here we focus on robustness with respect to tuning parameters, showing that more sophisticated algorithms tend to be more sensitive to the choice of step-size parameter and less robust to heterogeneity of the distribution of interest. We characterise this phenomenon by studying the behaviour of spectral gaps as an increasingly poor step-size is chosen for the algorithm. Motivated by these considerations, we propose a novel and simple gradient-based MCMC algorithm, inspired by the classical Barker accept-reject rule, with improved robustness properties. Extensive theoretical results, dealing with robustness to tuning, geometric ergodicity and scaling with dimension, suggest that the novel scheme combines the robustness of simple schemes with the efficiency of gradient-based ones. We show numerically that this type of robustness is particularly beneficial in the context of adaptive MCMC, giving examples where our proposed scheme significantly outperforms state-of-the-art alternatives.
来源URL: