Bayesian inference for risk minimization via exponentially tilted empirical likelihood
成果类型:
Article
署名作者:
Tang, Rong; Yang, Yun
署名单位:
University of Illinois System; University of Illinois Urbana-Champaign
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12510
发表日期:
2022
页码:
1257-1286
关键词:
confidence-intervals
variable selection
regression
frequentist
摘要:
The celebrated Bernstein von-Mises theorem ensures credible regions from a Bayesian posterior to be well-calibrated when the model is correctly-specified, in the frequentist sense that their coverage probabilities tend to the nominal values as data accrue. However, this conventional Bayesian framework is known to lack robustness when the model is misspecified or partly specified, for example, in quantile regression, risk minimization based supervised/unsupervised learning and robust estimation. To alleviate this limitation, we propose a new Bayesian inferential approach that substitutes the (misspecified or partly specified) likelihoods with proper exponentially tilted empirical likelihoods plus a regularization term. Our surrogate empirical likelihood is carefully constructed by using the first-order optimality condition of empirical risk minimization as the moment condition. We show that the Bayesian posterior obtained by combining this surrogate empirical likelihood and a prior is asymptotically close to a normal distribution centering at the empirical risk minimizer with an appropriate sandwich-form covariance matrix. Consequently, the resulting Bayesian credible regions are automatically calibrated to deliver valid uncertainty quantification. Computationally, the proposed method can be easily implemented by Markov Chain Monte Carlo sampling algorithms. Our numerical results show that the proposed method tends to be more accurate than existing state-of-the-art competitors.
来源URL: