Stratification pattern enumerator and its applications

成果类型:
Article
署名作者:
Tian, Ye; Xu, Hongquan
署名单位:
Beijing University of Posts & Telecommunications; University of California System; University of California Los Angeles
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1093/jrsssb/qkad125
发表日期:
2024
页码:
364-385
关键词:
strong orthogonal arrays designs CONSTRUCTION distance aberration
摘要:
Space-filling designs are widely used in computer experiments. A minimum aberration-type space-filling criterion was recently proposed to rank and assess a family of space-filling designs including orthogonal array-based Latin hypercubes and strong orthogonal arrays. However, it is difficult to apply the criterion in practice because it requires intensive computation for determining the space-filling pattern, which measures the stratification properties of designs on various subregions. In this article, we propose a stratification pattern enumerator to characterise the stratification properties. The enumerator is easy to compute and can efficiently rank space-filling designs. We show that the stratification pattern enumerator is a linear combination of the space-filling pattern. Based on the connection, we develop efficient algorithms for calculating the space-filling pattern. In addition, we establish a lower bound for the stratification pattern enumerator and present construction methods for designs that achieve the lower bound using multiplication tables over Galois fields. The constructed designs have good space-filling properties in low-dimensional projections and are robust under various criteria.