Extended fiducial inference: toward an automated process of statistical inference
成果类型:
Article
署名作者:
Liang, Faming; Kim, Sehwan; Sun, Yan
署名单位:
Purdue University System; Purdue University; Harvard University; Harvard Medical School; University of Pennsylvania
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1093/jrsssb/qkae082
发表日期:
2024
页码:
98-131
关键词:
parameters
optimization
probability
摘要:
While fiducial inference was widely considered a big blunder by R.A. Fisher, the goal he initially set-'inferring the uncertainty of model parameters on the basis of observations'-has been continually pursued by many statisticians. To this end, we develop a new statistical inference method called extended Fiducial inference (EFI). The new method achieves the goal of fiducial inference by leveraging advanced statistical computing techniques while remaining scalable for big data. Extended Fiducial inference involves jointly imputing random errors realized in observations using stochastic gradient Markov chain Monte Carlo and estimating the inverse function using a sparse deep neural network (DNN). The consistency of the sparse DNN estimator ensures that the uncertainty embedded in observations is properly propagated to model parameters through the estimated inverse function, thereby validating downstream statistical inference. Compared to frequentist and Bayesian methods, EFI offers significant advantages in parameter estimation and hypothesis testing. Specifically, EFI provides higher fidelity in parameter estimation, especially when outliers are present in the observations; and eliminates the need for theoretical reference distributions in hypothesis testing, thereby automating the statistical inference process. Extended Fiducial inference also provides an innovative framework for semisupervised learning.