Prediction sets adaptive to unknown covariate shift
成果类型:
Article
署名作者:
Qiu, Hongxiang; Dobriban, Edgar; Tchetgen, Eric Tchetgen
署名单位:
University of Pennsylvania
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1093/jrsssb/qkad069
发表日期:
2024
页码:
1680-1705
关键词:
efficient estimation
propensity score
inference
摘要:
Predicting sets of outcomes-instead of unique outcomes-is a promising solution to uncertainty quantification in statistical learning. Despite a rich literature on constructing prediction sets with statistical guarantees, adapting to unknown covariate shift-a prevalent issue in practice-poses a serious unsolved challenge. In this article, we show that prediction sets with finite-sample coverage guarantee are uninformative and propose a novel flexible distribution-free method, PredSet-1Step, to efficiently construct prediction sets with an asymptotic coverage guarantee under unknown covariate shift. We formally show that our method is asymptotically probably approximately correct, having well-calibrated coverage error with high confidence for large samples. We illustrate that it achieves nominal coverage in a number of experiments and a data set concerning HIV risk prediction in a South African cohort study. Our theory hinges on a new bound for the convergence rate of the coverage of Wald confidence intervals based on general asymptotically linear estimators.