CP factor model for dynamic tensors
成果类型:
Article
署名作者:
Han, Yuefeng; Yang, Dan; Zhang, Cun-Hui; Chen, Rong
署名单位:
University of Notre Dame; University of Hong Kong; Rutgers University System; Rutgers University New Brunswick
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1093/jrsssb/qkae036
发表日期:
2024
页码:
1383-1413
关键词:
Principal component analysis
time-series
number
identification
matrix
decompositions
rank
factorization
regression
SPARSE
摘要:
Observations in various applications are frequently represented as a time series of multidimensional arrays, called tensor time series, preserving the inherent multidimensional structure. In this paper, we present a factor model approach, in a form similar to tensor CANDECOMP/PARAFAC (CP) decomposition, to the analysis of high-dimensional dynamic tensor time series. As the loading vectors are uniquely defined but not necessarily orthogonal, it is significantly different from the existing tensor factor models based on Tucker-type tensor decomposition. The model structure allows for a set of uncorrelated one-dimensional latent dynamic factor processes, making it much more convenient to study the underlying dynamics of the time series. A new high-order projection estimator is proposed for such a factor model, utilizing the special structure and the idea of the higher order orthogonal iteration procedures commonly used in Tucker-type tensor factor model and general tensor CP decomposition procedures. Theoretical investigation provides statistical error bounds for the proposed methods, which shows the significant advantage of utilizing the special model structure. Simulation study is conducted to further demonstrate the finite sample properties of the estimators. Real data application is used to illustrate the model and its interpretations.