Full-model estimation for non-parametric multivariate finite mixture models
成果类型:
Article
署名作者:
de Chaumaray, Marie Du Roy; Marbac, Matthieu
署名单位:
Universite de Rennes; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Centre National de la Recherche Scientifique (CNRS); Universite de Rennes; Ecole Nationale de la Statistique et de l'Analyse de l'Information (ENSAI); Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite de Rennes
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1093/jrsssb/qkae002
发表日期:
2024
页码:
896-921
关键词:
VARIABLE SELECTION
likelihood
number
identification
components
inference
algorithm
ORDER
摘要:
This paper addresses the problem of full-model estimation for non-parametric finite mixture models. It presents an approach for selecting the number of components and the subset of discriminative variables (i.e. the subset of variables having different distributions among the mixture components) by considering an upper bound on the number of components (this number being allowed to increase with the sample size). The proposed approach considers a discretization of each variable into B bins and a penalization of the resulting log-likelihood. Considering that the number of bins tends to infinity as the sample size tends to infinity, we prove that our estimator of the model (number of components and subset of relevant variables for clustering) is consistent under a suitable choice of the penalty term. The relevance of our proposal is illustrated on simulated and benchmark data.
来源URL: