Proposers of the vote of thanks to Crane and Xu and contribution to the Discussion of 'Root and community inference on the latent growth process of a network'

成果类型:
Editorial Material
署名作者:
Jog, Varun; Loh, Po-Ling
署名单位:
University of Cambridge
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1093/jrsssb/qkae043
发表日期:
2024
关键词:
摘要:
Many statistical models for networks overlook the fact that most real-world networks are formed through a growth process. To address this, we introduce the Preferential Attachment Plus Erdos-Renyi model, where we let a random network G be the union of a preferential attachment (PA) tree T and additional Erdos-Renyi (ER) random edges. The PA tree captures the underlying growth process of a network where vertices/edges are added sequentially, while the ER component can be regarded as noise. Given only one snapshot of the final network G, we study the problem of constructing confidence sets for the root node of the unobserved growth process; the root node can be patient zero in an infection network or the source of fake news in a social network. We propose inference algorithms based on Gibbs sampling that scales to networks with millions of nodes and provide theoretical analysis showing that the size of the confidence set is small if the noise level of the ER edges is not too large. We also propose variations of the model in which multiple growth processes occur simultaneously, reflecting the growth of multiple communities; we use these models to provide a new approach to community detection.
来源URL: