GAMMA SHAPE MIXTURES FOR HEAVY-TAILED DISTRIBUTIONS
成果类型:
Article
署名作者:
Venturini, Sergio; Dominici, Francesca; Parmigiani, Giovanni
署名单位:
Bocconi University; Johns Hopkins University; Johns Hopkins Bloomberg School of Public Health; Johns Hopkins University; Johns Hopkins Medicine
刊物名称:
ANNALS OF APPLIED STATISTICS
ISSN/ISSBN:
1932-6157
DOI:
10.1214/07-AOAS156
发表日期:
2008
页码:
756-776
关键词:
health-care costs
bayesian-analysis
medical costs
models
retransformation
regression
smoking
ado
摘要:
An important question in health services research is the estimation of the proportion of medical expenditures that exceed a given threshold. Typically, medical expenditures present highly skewed, heavy tailed distributions, for which (a) simple variable transformations are insufficient to achieve a tractable low-dimensional parametric form and (b) nonparametric methods are not efficient in estimating exceedance probabilities for large thresholds. Motivated by this context, in this paper we propose a general Bayesian approach for the estimation of tail probabilities of heavy-tailed distributions, based on a mixture of gamma distributions in which the mixing occurs over the shape parameter. This family provides a flexible and novel approach for modeling heavy-tailed distributions, it is computationally efficient, and it only requires to specify a prior distribution for a single parameter. By carrying out Simulation Studies, we compare our approach with commonly used methods, Such as the log-normal model and nonparametric alternatives. We found that the mixture-gamma model significantly improves predictive performance in estimating tail probabilities, compared to these alternatives. We also applied our method to the Medical Current Beneficiary Survey (MCBS), for which we estimate the probability of exceeding a given hospitalization cost for smoking attributable diseases. We have implemented the method in the open Source GSM package, available from the Comprehensive R Archive Network.
来源URL: