DERIVING CHEMOSENSITIVITY FROM CELL LINES: FORENSIC BIOINFORMATICS AND REPRODUCIBLE RESEARCH IN HIGH-THROUGHPUT BIOLOGY
成果类型:
Article
署名作者:
Baggerly, Keith A.; Coombes, Kevin R.
署名单位:
University of Texas System; UTMD Anderson Cancer Center
刊物名称:
ANNALS OF APPLIED STATISTICS
ISSN/ISSBN:
1932-6157
DOI:
10.1214/09-AOAS291
发表日期:
2009
页码:
1309-1334
关键词:
retracted article. see
patterns
serum
microarrays
prediction
resistance
摘要:
High-throughput biological assays such as microarrays let us ask very detailed questions about how diseases operate, and promise to let us personalize therapy. Data processing, however, is often not described well enough to allow for exact reproduction of the results, leading to exercises in forensic bioinformatics where aspects of raw data and reported results are used to infer what methods must have been employed. Unfortunately, poor documentation can shift from an inconvenience to an active danger when it obscures not just methods but errors. In this report we examine several related papers purporting to use microarray-based signatures of drug sensitivity derived from cell lines to predict patient response. Patients in clinical trials are currently being allocated to treatment arms on the basis of these results. However, we show in five case studies that the results incorporate several simple errors that may be potting patients at risk. One theme that emerges is that the most common errors are simple (e.g., row or column offsets); conversely, it is our experience that the most simple errors are common. We then discuss steps we are taking to avoid such errors in our own investigations.