LEARNING LOCAL DIRECTED ACYCLIC GRAPHS BASED ON MULTIVARIATE TIME SERIES DATA
成果类型:
Article
署名作者:
Deng, Wanlu; Geng, Zhi; Li, Hongzhe
署名单位:
Peking University; University of Pennsylvania
刊物名称:
ANNALS OF APPLIED STATISTICS
ISSN/ISSBN:
1932-6157
DOI:
10.1214/13-AOAS635
发表日期:
2013
页码:
1663-1683
关键词:
Network structure
expression
activation
GROWTH
regularization
induction
inference
cells
摘要:
Multivariate time series (MTS) data such as time course gene expression data in genomics are often collected to study the dynamic nature of the systems. These data provide important information about the causal dependency among a set of random variables. In this paper, we introduce a computationally efficient algorithm to learn directed acyclic graphs (DAGs) based on MTS data, focusing on learning the local structure of a given target variable. Our algorithm is based on learning all parents (P), all children (C) and some descendants (D) (PCD) iteratively, utilizing the time order of the variables to orient the edges. This time series PCD-PCD algorithm (tsPCD-PCD) extends the previous PCD-PCD algorithm to dependent observations and utilizes composite likelihood ratio tests (CLRTs) for testing the conditional independence. We present the asymptotic distribution of the CLRT statistic and show that the tsPCD-PCD is guaranteed to recover the true DAG structure when the faithfulness condition holds and the tests correctly reject the null hypotheses. Simulation studies show that the CLRTs are valid and perform well even when the sample sizes are small. In addition, the tsPCD-PCD algorithm outperforms the PCD-PCD algorithm in recovering the local graph structures. We illustrate the algorithm by analyzing a time course gene expression data related to mouse T-cell activation.
来源URL: