CALIBRATING A LARGE COMPUTER EXPERIMENT SIMULATING RADIATIVE SHOCK HYDRODYNAMICS

成果类型:
Article
署名作者:
Gramacy, Robert B.; Bingham, Derek; Holloway, James Paul; Grosskopf, Michael J.; Kuranz, Carolyn C.; Rutter, Erica; Trantham, Matt; Drake, R. Paul
署名单位:
University of Chicago; Simon Fraser University; University of Michigan System; University of Michigan
刊物名称:
ANNALS OF APPLIED STATISTICS
ISSN/ISSBN:
1932-6157
DOI:
10.1214/15-AOAS850
发表日期:
2015
页码:
1141-1168
关键词:
gaussian process models prediction emulators search DESIGN
摘要:
We consider adapting a canonical computer model calibration apparatus, involving coupled Gaussian process (GP) emulators, to a computer experiment simulating radiative shock hydrodynamics that is orders of magnitude larger than what can typically be accommodated. The conventional approach calls for thousands of large matrix inverses to evaluate the likelihood in an MCMC scheme. Our approach replaces that costly ideal with a thrifty take on essential ingredients, synergizing three modern ideas in emulation, calibration and optimization: local approximate GP regression, modularization, and mesh adaptive direct search. The new methodology is motivated both by necessity-considering our particular application-and by recent trends in the supercomputer simulation literature. A synthetic data application allows us to explore the merits of several variations in a controlled environment and, together with results on our motivating real-data experiment, lead to noteworthy insights into the dynamics of radiative shocks as well as the limitations of the calibration enterprise generally.
来源URL: