THE STATISTICAL PERFORMANCE OF MATCHING-ADJUSTED INDIRECT COMPARISONS: ESTIMATING TREATMENT EFFECTS WITH AGGREGATE EXTERNAL CONTROL DATA

成果类型:
Article
署名作者:
Cheng, David; Ayyagari, Rajeev; Signorovitch, James
署名单位:
Harvard University; Harvard University Medical Affiliates; Massachusetts General Hospital; Analysis Group Inc.
刊物名称:
ANNALS OF APPLIED STATISTICS
ISSN/ISSBN:
1932-6157
DOI:
10.1214/20-AOAS1359
发表日期:
2020
页码:
1806-1833
关键词:
mixed treatment comparisons propensity score metaanalysis combination selection efficacy trials
摘要:
Indirect comparisons of treatment-specific outcomes across separate studies often inform decision making in the absence of head-to-head randomized comparisons. Differences in baseline characteristics between study populations may introduce confounding bias in such comparisons. Matching-adjusted indirect comparison (MAIC) (Pharmacoeconomics 28 (2010) 935-945) has been used to adjust for differences in observed baseline covariates when the individual patient-level data (IPD) are available for only one study and aggregate data (AGD) are available for the other study. The approach weights outcomes from the IPD using estimates of trial selection odds that balance baseline covariates between the IPD and AGD. With the increasing use of MAIC, there is a need for formal assessments of its statistical properties. In this paper we formulate identification assumptions for causal estimands that justify MAIC estimators. We then examine large sample properties and evaluate strategies for estimating standard errors without the full IPD from both studies. The finite-sample bias of MAIC and the performance of confidence intervals based on different standard error estimators are evaluated through simulations. The method is illustrated through an example comparing placebo arm and natural history outcomes in Duchenne muscular dystrophy.
来源URL: