SURROGATE METHOD FOR PARTIAL ASSOCIATION BETWEEN MIXED DATA WITH APPLICATION TO WELL-BEING SURVEY ANALYSIS

成果类型:
Article
署名作者:
Li, Shaobo; Fan, Zhaohu; Liu, Ivy; Morrison, Philip S.; Liu, Dungang
署名单位:
University of Kansas; University System of Georgia; Georgia Institute of Technology; Victoria University Wellington; Victoria University Wellington; University System of Ohio; University of Cincinnati
刊物名称:
ANNALS OF APPLIED STATISTICS
ISSN/ISSBN:
1932-6157
DOI:
10.1214/24-AOAS1879
发表日期:
2024
页码:
2254-2276
关键词:
generalized anxiety disorder Latent Variable Models regression-models discrete binary copula outcomes QUESTIONNAIRE comorbidity phenotypes
摘要:
This paper is motivated by the analysis of a survey study focusing on college student well-being before and after the COVID-19 pandemic outbreak. A statistical challenge in well-being studies lies in the multidimensionality of outcome variables, recorded in various scales such as continuous, binary, or ordinal. The presence of mixed data complicates the examination of their relationships when adjusting for important covariates. To address this challenge, we propose a unifying framework for studying partial association between mixed data. We achieve this by defining a unified residual using the surrogate method. The idea is to map the residual randomness to a consistent continuous scale, regardless of the original scales of outcome variables. This framework applies to parametric or semiparametric models for covariate adjustments. We validate the use of such residuals for assessing partial association, introducing a measure that generalizes classical Kendall's tau to capture both partial and marginal associations. Moreover, our development advances the theory of the surrogate method by demonstrating its applicability without requiring outcome variables to have a latent variable structure. In the analysis of the college student well-being survey, our proposed method unveils the contingency of relationships between multidimensional well-being measures and micro personal risk factors (e.g., physical health, loneliness, and accommodation) as well as the macro disruption caused by COVID-19.
来源URL: