NORMALIZING TRANSFORMATIONS AND BOOTSTRAP CONFIDENCE-INTERVALS

成果类型:
Article
署名作者:
KONISHI, S
署名单位:
Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/aos/1176348393
发表日期:
1991
页码:
2209-2225
关键词:
edgeworth expansion jackknife approximations statistics
摘要:
This paper considers the problem of constructing approximate confidence intervals for functional parameters in the nonparametric case. The approach based on transformation theory is applied to improve standard confidence intervals. The accelerated bias-corrected percentile interval introduced by Efron relies on the existence of a normalizing transformation with bias and skewness corrections, although calculation does not require explicit knowledge of its functional form. We formally construct such a transformation and estimate bias and skewness correction factors for nonparametric situations. The resulting interval is shown to be second-order accurate. To this end Edgeworth expansions for the distributions of transformed statistics are derived, using the von Mises expansion.