ON MAXIMUM-LIKELIHOOD-ESTIMATION IN INFINITE DIMENSIONAL PARAMETER SPACES
成果类型:
Article
署名作者:
WONG, WH; SEVERINI, TA
署名单位:
Northwestern University
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/aos/1176348113
发表日期:
1991
页码:
603-632
关键词:
convergence
EFFICIENCY
models
INFORMATION
rates
摘要:
An approximate maximum likelihood estimate is known to be consistent under some compactness and integrability conditions. In this paper we study its convergence rate and its asymptotic efficiency in estimating smooth functionals of the parameter. We provide conditions under which the rate of convergence can be established. This rate is essentially governed by the size of the space of score functions as measured by an entropy index. We also show that, for a large class of smooth functionals, the plug-in maximum likelihood estimate is asymptotically efficient, that is, it achieves the minimal Fisher information bound. The theory is illustrated by several nonparametric or semiparametric examples.