THE ASYMPTOTICS OF ROUSSEEUW MINIMUM VOLUME ELLIPSOID ESTIMATOR
成果类型:
Article
署名作者:
DAVIES, L
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/aos/1176348891
发表日期:
1992
页码:
1828-1843
关键词:
multivariate location
squares regression
matrices
points
摘要:
Rousseeuw's minimum volume estimator for multivariate location and dispersion parameters has the highest possible breakdown point for an affine equivariant estimator. In this paper we establish that it satisfies a local Holder condition of order 1/2 and converges weakly at the rate of n-1/3 to a non-Gaussian distribution.