ON PREDICTIVE LEAST-SQUARES PRINCIPLES
成果类型:
Article
署名作者:
WEI, CZ
署名单位:
Academia Sinica - Taiwan
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/aos/1176348511
发表日期:
1992
页码:
1-42
关键词:
stochastic regression-models
AUTOREGRESSIVE MODELS
asymptotic properties
strong consistency
order selection
摘要:
Recently, Rissanen proposed a new model selection criterion PLS that selects the model that minimizes the accumulated squares of prediction errors. Usually, the information-based criteria, such as AIC and BIC, select the model that minimizes a loss function which can be expressed as a sum of two terms. One measures the goodness of fit and the other penalizes the complexity of the selected model. In this paper we provide such an interpretation for PLS. Using this relationship, we give sufficient conditions for PLS to be strongly consistent in stochastic regression models. The asymptotic equivalence between PLS and BIC for ergodic models is then studied. Finally, based on the Fisher information, a new criterion FIC is proposed. This criterion shares most asymptotic properties with PLS while removing some of the difficulties encountered by PLS in a finite-sample situation.
来源URL: