RENORMALIZING UPPER AND LOWER BOUNDS FOR INTEGRATED RISK IN THE WHITE-NOISE MODEL
成果类型:
Article
署名作者:
LOW, MG
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/aos/1176349137
发表日期:
1993
页码:
577-589
关键词:
convergence
rates
摘要:
Renormalization arguments are used to derive optimal rates of convergence, under integrated squared error loss, for parameter spaces having a certain rectangular structure.