ASYMPTOTICALLY EFFICIENT ESTIMATION IN SEMIPARAMETRIC GENERALIZED LINEAR-MODELS
成果类型:
Article
署名作者:
CHEN, H
署名单位:
National Taiwan University
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/aos/1176324700
发表日期:
1995
页码:
1102-1129
关键词:
CONVERGENCE-RATES
regression
摘要:
We use the method of maximum likelihood and regression splines to derive estimates of the parametric and nonparametric components of semiparametric generalized linear models. The resulting estimators of both components are shown to be consistent. Also, the asymptotic theory for the estimator of the parametric component is derived, indicating that the parametric component can be estimated efficiently without under-smoothing the nonparametric component.