Inference for unstable long-memory processes with applications to fractional unit root autoregressions

成果类型:
Article
署名作者:
Chan, NH; Terrin, N
署名单位:
Carnegie Mellon University
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/aos/1176324318
发表日期:
1995
页码:
1662-1683
关键词:
time-series
摘要:
An autoregressive time series is said to be unstable if all of its characteristic roots lie on or outside the unit circle, with at least one on the unit circle. This paper aims at developing asymptotic inferential schemes for an unstable autoregressive model generated by long-memory innovations. This setting allows both nonstationarity and long-memory behavior in the modeling of low-frequency phenomena. In developing these procedures, a novel weak convergence result for a sequence of long-memory random variables to a stochastic integral of fractional Brownian motions is established. Results of this paper can be used to test for unit roots in a fractional AR model.