Kernel estimation in a nonparametric marker dependent hazard model

成果类型:
Article
署名作者:
Nielsen, JP; Linton, OB
署名单位:
Yale University
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/aos/1176324321
发表日期:
1995
页码:
1735-1748
关键词:
regression-model counting-processes large sample inference density tests fit
摘要:
We introduce a new kernel hazard estimator in a nonparametric model where the stochastic hazard depends on the current value of time and on the current value of a time dependent covariate or marker. We establish the pointwise and global convergence of our estimator.