EFFICIENT LOCATION AND REGRESSION ESTIMATION FOR LONG-RANGE DEPENDENT REGRESSION-MODELS
成果类型:
Article
署名作者:
DAHLHAUS, R
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/aos/1176324635
发表日期:
1995
页码:
1029-1047
关键词:
memory stationary errors
摘要:
In this paper we construct an efficient weighted least squares estimator for the mean and more generally for the regression parameters in certain Gaussian long range dependent regression models, including polynomial regression. The form of the estimator does not depend on the whole dependence structure of the residuals, but only on the local behaviour of the spectral density at zero. By using an estimator of the self-similarity parameter, we give a fully efficient estimator. Furthermore, we construct efficient weighted M-estimators.