ON A SEMIPARAMETRIC VARIANCE FUNCTION MODEL AND A TEST FOR HETEROSCEDASTICITY
成果类型:
Article
署名作者:
MULLER, HG; ZHAO, PL
署名单位:
Merck & Company; Merck & Company USA
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/aos/1176324630
发表日期:
1995
页码:
946-967
关键词:
covariance-matrix
regression
摘要:
We propose a general semiparametric variance function model in a fixed design regression setting. In this model, the regression function is assumed to be smooth and is modelled nonparametrically, whereas the relation between the variance and the mean regression function is assumed to follow a generalized linear model. Almost all variance function models that were considered in the literature emerge as special cases. Least-squares-type estimates for the parameters of this model and the simultaneous estimation of the unknown regression and variance functions by means of nonparametric kernel estimates are combined to infer the parametric and nonparametric components of the proposed model. The asymptotic distribution of the parameter estimates is derived and is shown to follow usual parametric rates in spite of the presence of the nonparametric component in the model. This result is applied to obtain a data-based test for heteroscedasticity under minimal assumptions on the shape of the regression function.
来源URL: