Asymptotically uniformly most powerful tests in parametric and semiparametric models

成果类型:
Article
署名作者:
Choi, SS; Hall, WJ; Schick, A
署名单位:
University of Rochester; State University of New York (SUNY) System; Binghamton University, SUNY
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
发表日期:
1996
页码:
841-861
关键词:
efficient estimation regression-models linear estimators INFORMATION likelihood
摘要:
Tests of hypotheses about finite-dimensional parameters in a semiparametric model are studied from Pitman's moving alternative (or local) approach using Le Cam's local asymptotic normality concept. For the case of a real parameter being tested, asymptotically uniformly most powerful (AUMP) tests are characterized for one-sided hypotheses, and AUMP unbiased tests for two-sided ones. An asymptotic invariance principle is introduced for multidimensional hypotheses, and AUMP invariant tests are characterized. These provide optimality for Wald, Rao (score), Neyman-Rao (effective score) and likelihood ratio tests in parametric models, and for Neyman-Rao tests in semiparametric models when constructions are feasible. Inversions lead to asymptotically uniformly most accurate confidence sets. Examples include one-, two- and h-sample problems, a linear regression model with unknown error distribution and a proportional hazards regression model with arbitrary baseline hazards. Results are presented in a format that facilitates application in strictly parametric models.