Penalized quasi-likelihood estimation in partial linear models

成果类型:
Article
署名作者:
Mammen, E; Van de Geer, S
署名单位:
Ruprecht Karls University Heidelberg; Leiden University - Excl LUMC; Leiden University
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
发表日期:
1997
页码:
1014-1035
关键词:
regression-analysis resampling methods convergence-rates spline jackknife bootstrap
摘要:
Consider a partial linear model, where the expectation of a random variable Y depends on covariates (x, z) through F(theta(o)x + m(o)(z)), with theta(o) an unknown parameter, and m(o) an unknown function. We apply the theory of empirical processes to derive the asymptotic properties of the penalized quasi-likelihood estimator.