Nonlinear confounding in high-dimensional regression

成果类型:
Article
署名作者:
Li, KC
署名单位:
University of California System; University of California Los Angeles
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
发表日期:
1997
页码:
577-612
关键词:
sliced inverse regression Projection Pursuit Regression MULTIPLE-REGRESSION data visualization reduction models link plots
摘要:
It is not uncommon to find nonlinear patterns in the scatterplots of regressor variables. But how such findings affect standard regression analysis remains largely unexplored. This article offers a theory on nonlinear confounding, a term for describing the situation where a certain nonlinear relationship in regressors leads to difficulties in modeling and related analysis of the data. The theory begins with a measure of nonlinearity between two regressor variables. It is then used to assess nonlinearity between any two projections from the high-dimensional regressor and a method of finding most nonlinear projections is given. Nonlinear confounding is addressed by taking a fresh new look at fundamental issues such as the validity of prediction and inference, diagnostics, regression surface approximation, model uncertainty and Fisher information loss.