Two estimators of the mean of a counting process with panel count data

成果类型:
Article
署名作者:
Wellner, JA; Zhang, Y
署名单位:
University of Washington; University of Washington Seattle; State University System of Florida; University of Central Florida
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
发表日期:
2000
页码:
779-814
关键词:
FAILURE TIME DATA regression-analysis point-processes algorithm MODEL
摘要:
We study two estimators of the mean function of a counting process based on panel count data. The setting for panel count data is one in which n independent subjects, each with a counting process with common mean function, are observed at several possibly different times during a study. Following a model proposed by Schick and Yu, we allow the number of observation times, and the observation times themselves, to be random variables. Our goal is to estimate the mean function of the counting process. We show that the estimator of the mean function proposed by Sun and Kalbfleisch can be viewed as a pseudo-maximum likelihood estimator when a non-homogeneous Poisson process model is assumed for the counting process. We establish consistency of both the nonparametric pseudo maximum likelihood estimator of Sun and Kalbfleisch and the full maximum likelihood estimator, even if the underlying counting process is not a Poisson process. We also derive the asymptotic distribution of both estimators at a fixed time t, and compare the resulting theoretical relative efficiency with finite sample relative efficiency by way of a limited Monte-Carlo study.