Semi-parametric estimation tn the nonlinear structural errors-in-variables model

成果类型:
Article
署名作者:
Taupin, ML
署名单位:
Universite Paris Saclay; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI)
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/aos/996986502
发表日期:
2001
页码:
66-93
关键词:
LIKELIHOOD-ESTIMATION Optimal Rates CONVERGENCE regression density
摘要:
In the nonlinear structural errors-in-variables model, we propose a consistent estimator of the unknown parameter using a modified least squares criterion. We give an upper bound of its rate of convergence which is strongly related to the regularity of the regression function and is generally slower than the parametric rate of convergence n(-1/2). Nevertheless, the rate is of order n-(1/2) for some particular analytic regression functions. For instance, when the regression Function is either a polynomial function or an exponential function, we prove that our estimator achieves the parametric rate of convergence.