Optimal robust M-estimates of location

成果类型:
Article
署名作者:
Fraiman, R; Yohai, VJ; Zamar, RH
署名单位:
Universidad de San Andres Argentina; University of Buenos Aires; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); University of British Columbia
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/aos/996986506
发表日期:
2001
页码:
194-223
关键词:
摘要:
We find optimal robust estimates for the location parameter of n independent measurements from a common distribution F that belongs to a contamination neighborhood of a normal distribution. We follow an asymptotic minimax approach similar to Huber's but work with full neighborhoods of the central parametric model including nonsymmetric distributions. Our optimal estimates minimize monotone functions of the estimate's asymptotic variance and bias, which include asymptotic approximations for the quantiles of the estimate's distribution. In particular, we obtain robust asymptotic confidence intervals of minimax length.