The complex Wishart distribution and the symmetric group

成果类型:
Article
署名作者:
Graczyk, P; Letac, G; Massam, H
署名单位:
Universite d'Angers; Universite de Toulouse; Universite Toulouse III - Paul Sabatier; York University - Canada
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
发表日期:
2003
页码:
287-309
关键词:
plane partitions moments
摘要:
Let V be the space of (r, r) Hermitian matrices and let Omega be the cone of the positive definite ones. We say that the random variable S, taking its values in (Ω) over bar, has the complex Wishart distribution gamma(p,sigma) if E(exp trace(thetaS)) = (det(I-r - sigmatheta))(-p), where sigma and sigma(-1) - theta are in Omega, and where p = 1, 2,..., r - 1 or p > r - 1. In this paper, we compute all moments of S and S-1. The techniques involve in particular the use of the irreducible characters of the symmetric group.