Testing conditional moment restrictions
成果类型:
Article
署名作者:
Tripathi, G; Kitamura, Y
署名单位:
University of Wisconsin System; University of Wisconsin Madison; University of Pennsylvania
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
发表日期:
2003
页码:
2059-2095
关键词:
empirical likelihood
functional form
semiparametric regression
estimating equations
specification
models
EFFICIENCY
estimator
GOODNESS
fit
摘要:
Let (x,z) be a pair of observable random vectors. We construct a new smoothed empirical likelihood-based test for the hypothesis E{g(z, theta) \x} = 0 w.p. 1, where g is a vector of known functions and theta an unknown finite-dimensional parameter. We show that the test statistic is asymptotically normal under the null hypothesis and derive its asymptotic distribution under a sequence of local alternatives. Furthermore, the test is shown to possess an optimality property in large samples. Simulation evidence suggests that it also behaves well in small samples.