Statistical inference for time-inhomogeneous volatility models
成果类型:
Article
署名作者:
Mercurio, D; Spokoiny, V
署名单位:
Humboldt University of Berlin; Leibniz Association; Weierstrass Institute for Applied Analysis & Stochastics
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
发表日期:
2004
页码:
577-602
关键词:
varying-coefficient models
conditional heteroskedasticity
series
摘要:
This paper offers a new approach for estimating and forecasting the volatility of financial time series. No assumption is made about the parametric form of the processes. On the contrary, we only suppose that the volatility can be approximated by a constant over some interval. In such a framework, the main problem consists of filtering this interval of time homogeneity; then the estimate of the volatility can be simply obtained by local averaging. We construct a locally adaptive volatility, estimate (LAVE) which can perform this task and investigate it both from the theoretical point of view and through Monte Carlo simulations. Finally, the LAVE procedure is applied to a data set of nine exchange rates and a comparison with a standard GARCH model is also provided. Both models appear to be capable of explaining many of the features of the data; nevertheless, the new approach seems to be superior to the GARCH method as far as the out-of-sample results are concerned.