Bayesian-motivated tests of function fit and their asymptotic frequentist properties
成果类型:
Article
署名作者:
Aerts, M; Claeskens, G; Hart, JD
署名单位:
Hasselt University; KU Leuven; Texas A&M University System; Texas A&M University College Station
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/009053604000000805
发表日期:
2004
页码:
2580-2615
关键词:
GOODNESS-OF-FIT
MODEL
regression
CONVERGENCE
selection
摘要:
We propose and analyze nonparametric tests of the null hypothesis that a function belongs to a specified parametric family. The tests are based on BIC approximations, pi(BIC), to the posterior probability of the null model, and may be carried out in either Bayesian or frequentist fashion. We obtain results on the asymptotic distribution Of pi(BIC) under both the null hypothesis and local alternatives. One version Of pi(BIC), call it pi*(BIC), uses a class of models that are orthogonal to each other and growing in number without bound as sample size, n, tends to infinity. We show that rootn(1 - pi*(BIC)) converges in distribution to a stable law under the null hypothesis. We also show that pi*(BIC) can detect local alternatives converging to the null at the rate rootlogn/n. A particularly interesting finding is that the power of the pi*(BIC)-based test is asymptotically equal to that of a test based on the maximum of alternative log-likelihoods. Simulation results and an example involving variable star data illustrate desirable features of the proposed tests.