Data-driven rate-optimal specification testing in regression models
成果类型:
Article
署名作者:
Guerre, E; Lavergne, P
署名单位:
Sorbonne Universite; Universite PSL; Ecole des Hautes Etudes en Sciences Sociales (EHESS); Universite de Toulouse; Universite Toulouse 1 Capitole; Centre National de la Recherche Scientifique (CNRS)
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/009053604000001200
发表日期:
2005
页码:
840-870
关键词:
GOODNESS-OF-FIT
adaptive tests
bootstrap
摘要:
We propose new data-driven smooth tests for a parametric regression function. The smoothing parameter is selected through a new criterion that favors a large smoothing parameter under the null hypothesis. The resulting test is adaptive rate-optimal and consistent against Pitman local alternatives approaching the parametric model at a rate arbitrarily close to I/root n. Asymptotic critical values come from the standard normal distribution and the bootstrap can be used in small samples. A general formalization allows one to consider a large class of linear smoothing methods, which can be tailored for detection of additive alternatives.