Likelihood approach for marginal proportional hazards regression in the presence of dependent censoring

成果类型:
Article
署名作者:
Zeng, DL
署名单位:
University of North Carolina; University of North Carolina Chapel Hill
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/009053604000001291
发表日期:
2005
页码:
501-521
关键词:
摘要:
In many public health problems, an important goal is to identify the effect of some treatment/intervention on the risk of failure for the whole population. A marginal proportional hazards regression model is often used to analyze such an effect. When dependent censoring is explained by many auxiliary covariates, we utilize two working models to condense high-dimensional covariates to achieve dimension reduction. Then the estimator of the treatment effect is obtained by maximizing a pseudo-likelihood function over a sieve space. Such an estimator is shown to be consistent and asymptotically normal when either of the two working models is correct; additionally, when both working models are correct, its asymptotic variance is the same as the semiparametric efficiency bound.