Asymptotic equivalence of nonparametric autoregression and nonparametric regression

成果类型:
Article
署名作者:
Grama, Ion G.; Neumann, Michael H.
署名单位:
Friedrich Schiller University of Jena
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/009053606000000560
发表日期:
2006
页码:
1701-1732
关键词:
gaussian white-noise DENSITY-ESTIMATION Minimax Risk diffusion approximation drift
摘要:
It is proved that nonparametric autoregression is asymptotically equivalent in the sense of Le Cam's deficiency distance to nonparametric regression with random design as well as with regular nonrandom design.