False discovery and false nondiscovery rates in single-step multiple testing procedures

成果类型:
Article
署名作者:
Sarkar, Sanat K.
署名单位:
Pennsylvania Commonwealth System of Higher Education (PCSHE); Temple University
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/009053605000000778
发表日期:
2006
页码:
394-415
关键词:
Empirical Bayes
摘要:
Results on the false discovery rate (FDR) and the false nondiscovery rate (FNR) are developed for single-step multiple testing procedures. In addition to verifying desirable properties of FDR and FNR as measures of error rates, these results extend previously known results, providing further insights, particularly under dependence, into the notions of FDR and FNR and related measures. First, considering fixed configurations of true and false null hypotheses, inequalities are obtained to explain how an FDR- or FNR-controlling single-step procedure, such as a Bonferroni or Sidak procedure, can potentially be improved. Two families of procedures are then constructed, one that modifies the FDR-controlling and the other that modifies the FNR-controlling Sidak procedure. These are proved to control FDR or FNR under independence less conservatively than the corresponding families that modify the FDR- or FNR-controlling Bonferroni procedure. Results of numerical investigations of the performance of the modified Sidak FDR procedure over its competitors are presented. Second, considering a mixture model where different configurations of true and false null hypotheses are assumed to have certain probabilities, results are also derived that extend some of Storey's work to the dependence case.