Prediction in functional linear regression

成果类型:
Article
署名作者:
Cai, T. Tony; Hall, Peter
署名单位:
University of Pennsylvania; Australian National University
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/009053606000000830
发表日期:
2006
页码:
2159-2179
关键词:
principal-components-analysis logistic-regression models CURVES
摘要:
There has been substantial recent work on methods for estimating the slope function in linear regression for functional data analysis. However, as in the case of more conventional finite-dimensional regression, much of the practical interest in the slope centers on its application for the purpose of prediction, rather than on its significance in its own right. We show that the problems of slope-function estimation, and of prediction from an estimator of the slope function, have very different characteristics. While the former is intrinsically nonparametric, the latter can be either nonparametric or semi-parametric. In particular, the optimal mean-square convergence rate of predictors is n(-1), where n denotes sample size, if the predictand is a sufficiently smooth function. In other cases, convergence occurs at a polynomial rate that is strictly slower than n(-1). At the boundary between these two regimes, the mean-square convergence rate is less than n(-1) by only a logarithmic factor. More generally, the rate of convergence of the predicted value of the mean response in the regression model, given a particular value of the explanatory variable, is determined by a subtle interaction among the smoothness of the predictand, of the slope function in the model, and of the autocovariance function for the distribution of explanatory variables.
来源URL: