Inference under right censoring for transformation models with a change-point based on a covariate threshold
成果类型:
Article
署名作者:
Kosorok, Michael R.; Song, Rui
署名单位:
University of North Carolina; University of North Carolina Chapel Hill
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/009053606000001244
发表日期:
2007
页码:
957-989
关键词:
nuisance parameter
cox regression
tests
摘要:
We consider linear transformation models applied to right censored survival data with a change-point in the regression coefficient based on a covariate threshold. We establish consistency and weak convergence of the nonparametric maximum likelihood estimators. The change-point parameter is shown to be n-consistent, while the remaining parameters are shown to have the expected root-n consistency. We show that the procedure is adaptive in the sense that the nonthreshold parameters are estimable with the same precision as if the true threshold value were known. We also develop Monte Carlo methods of inference for model parameters and score tests for the existence of a change-point. A key difficulty here is that some of the model parameters are not identifiable under the null hypothesis of no change-point. Simulation studies establish the validity of the proposed score tests for finite sample sizes.