Estimation of the Hurst parameter from discrete noisy data
成果类型:
Article
署名作者:
Gloter, Arnaud; Hoffmann, Marc
署名单位:
Universite Gustave-Eiffel; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Paris-Est-Creteil-Val-de-Marne (UPEC)
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/009053607000000316
发表日期:
2007
页码:
1947-1974
关键词:
wavelet coefficients
摘要:
We estimate the Hurst parameter H of a fractional Brownian motion from discrete noisy data observed along a high frequency sampling scheme. The presence of systematic experimental noise makes recovery of H more difficult since relevant information is mostly contained in the high frequencies of the signal. We quantify the difficulty of the statistical problem in a min-max sense: we prove that the rate n(-1/(4H+2)) is optimal for estimating H and propose rate optimal estimators based on adaptive estimation of quadratic functionals.