INFERENCE FOR EIGENVALUES AND EIGENVECTORS OF GAUSSIAN SYMMETRIC MATRICES
成果类型:
Article
署名作者:
Schwartzman, Armin; Mascarenhas, Walter F.; Taylor, Jonathan E.
署名单位:
Harvard University; Harvard T.H. Chan School of Public Health; Harvard University; Harvard University Medical Affiliates; Dana-Farber Cancer Institute; Universidade de Sao Paulo; Stanford University
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/08-AOS628
发表日期:
2008
页码:
2886-2919
关键词:
likelihood ratio tests
diffusion-tensor mri
statistical-analysis
exponential families
geometry
regression
摘要:
This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 x 3 and 2 x 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.