Bounds for Bayesian order identification with application to mixtures
成果类型:
Article
署名作者:
Chambaz, Antoine; Rousseau, Judith
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Paris Cite; IMT - Institut Mines-Telecom; Institut Polytechnique de Paris; Telecom SudParis; Centre National de la Recherche Scientifique (CNRS); Universite PSL; Universite Paris-Dauphine; Institut Polytechnique de Paris; ENSAE Paris
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/009053607000000857
发表日期:
2008
页码:
938-962
关键词:
CONVERGENCE-RATES
摘要:
The efficiency of two Bayesian order estimators is studied. By using nonparametric techniques, we prove new underestimation and overestimation bounds. The results apply to various models, including mixture models. In this case, the errors are shown to be O(e(-an)) and O((log n)(b) / root n) (a, b > 0), respectively.