General frequentist properties of the posterior profile distribution

成果类型:
Article
署名作者:
Cheng, Guang; Kosorok, Michael R.
署名单位:
Duke University; University of North Carolina; University of North Carolina Chapel Hill
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/07-AOS536
发表日期:
2008
页码:
1819-1853
关键词:
regression-models likelihood inference sampler
摘要:
In this paper, inference for the parametric component of a semiparametric model based on sampling from the posterior profile distribution is thoroughly investigated from the frequentist viewpoint. The higher-order validity of the profile sampler obtained in Cheng and Kosorok [Ann. Statist. 36 (2008)] is extended to semiparametric models in which the infinite dimensional nuisance parameter may not have a root-n convergence rate. This is a nontrivial extension because it requires a delicate analysis of the entropy of the semiparametric models involved. We find that the accuracy of inferences based on the profile sampler improves as the convergence rate of the nuisance parameter increases. Simulation studies are used to verify this theoretical result. We also establish that an exact frequentist confidence interval obtained by inverting the profile log-likelihood ratio can be estimated with higher-order accuracy by the credible set of the same type obtained from the posterior profile distribution. Our theory is verified for several specific examples.