Stability of the Gibbs sampler for Bayesian hierarchical models
成果类型:
Article
署名作者:
Papaspiliopoulos, Omiros; Roberts, Gareth
署名单位:
University of Warwick
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/009053607000000749
发表日期:
2008
页码:
95-117
关键词:
markov-chains
摘要:
We characterize the convergence of the Gibbs sampler which samples from the joint posterior distribution of parameters and missing data in hierarchical linear models with arbitrary symmetric error distributions. We show that the convergence can be uniform, geometric or subgeometric depending on the relative tail behavior of the error distributions, and on the parametrization chosen. Our theory is applied to characterize the convergence of the Gibbs sampler on latent Gaussian process models. We indicate how the theoretical framework we introduce will be useful in analyzing more complex models.
来源URL: