COVARIATE-ADJUSTED NONLINEAR REGRESSION
成果类型:
Article
署名作者:
Cui, Xia; Guo, Wensheng; Lin, Lu; Zhu, Lixing
署名单位:
Shandong University; Hong Kong Baptist University; University of Pennsylvania; East China Normal University
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/08-AOS627
发表日期:
2009
页码:
1839-1870
关键词:
dietary-protein restriction
glomerular-filtration-rate
Empirical Likelihood
confidence-regions
longitudinal data
linear-models
equation
disease
摘要:
In this paper, we propose a covariate-adjusted nonlinear regression model. In this model, both the response and predictors can only be observed after being distorted by some multiplicative factors. Because of nonlinearity, existing methods for the linear setting cannot be directly employed. To attack this problem, we propose estimating the distorting functions by nonparametrically regressing the predictors and response on the distorting covariate; then, nonlinear least squares estimators for the parameters are obtained using the estimated response and predictors. Root n-consistency and asymptotic normality are established. However, the limiting variance has a very complex structure with several unknown components, and confidence regions based on normal approximation are not efficient. Empirical likelihood-based confidence regions are proposed, and their accuracy is also verified due to its self-scale invariance. Furthermore, unlike the common results derived from the profile methods, even when plug-in estimates are used for the infinite-dimensional nuisance parameters (distorting functions), the limit of empirical likelihood ratio is still chi-squared distributed. This property cases the construction of the empirical likelihood-based confidence regions. A simulation study is carried out to assess the finite sample performance of the proposed estimators and confidence regions. We apply our method to study the relationship between glomerular filtration rate and serum creatinine.